

Ta₃N₅ as a Novel Visible Light-Driven Photocatalyst ($\lambda < 600$ nm)

Go Hitoki,[†] Akio Ishikawa,[†] Tsuyoshi Takata,[†] Junko N. Kondo,[†] Michikazu Hara,[†] and Kazunari Domen^{*,††}

[†]Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503

^{††}Core Research for Evolutional Science and Technology, Japan Science and Technology Corp. (CREST, JST)
2-1-13 Higashiueno, Taito-ku, Tokyo 110-0015

(Received April 15, 2002; CL-020316)

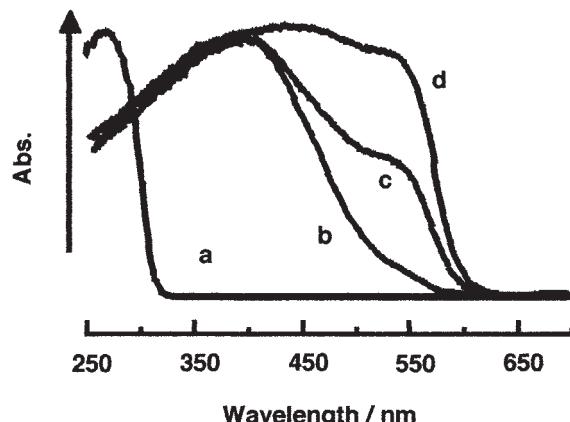
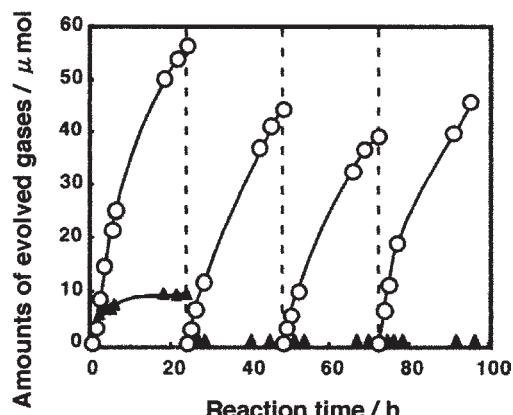
A transition metal nitride, Ta₃N₅, is a novel photocatalyst responding to visible light. Ta₃N₅ evolves H₂ and O₂ by visible light ($\lambda < 600$ nm) irradiation in the presence of sacrificial electron donor and acceptor, respectively without any noticeable photo-anodic or cathodic corrosion, representing a candidate for overall water splitting by visible light.

A photocatalytic system that produces clean and reproducible H₂ from water can be a potential method to utilize solar energy. Various kinds of photocatalysts have been found to decompose H₂O to stoichiometric H₂ and O₂ under ultraviolet light irradiation.¹⁻⁴ Recently, In_{1-x}Ni_xTaO₄ was reported as a photocatalyst for water decomposition under visible light irradiation.⁵ This catalyst, however, has only weak absorption in the visible region and the efficiency in the visible region is low. Accordingly, a satisfactory system that works under visible light irradiation has not yet been devised. Most of currently available photocatalysts for overall water splitting are metal oxides, which have wide band gaps (>3 eV), and thus only absorb ultraviolet photons.¹⁻⁴ The wide band gaps of such oxides are due to their deep top levels of the valence bands consisting of O_{2p} orbitals.¹ Although some chalcogenides, such as CdS and CdSe, have narrower band gaps that are suitable for water splitting, they are unstable because of their photo-anodic dissolution.^{6,7} Herein, we report a transition metal nitride, Ta₃N₅, as a potential candidate for a stable photocatalyst for water decomposition utilizing visible light.

Ta₃N₅ powder was prepared from Ta₂O₅ powder by nitridation under a flow of ammonia gas (flow rate: 1 l/min) at 1123 K for 15 h. The crystal structure of the resulting material was confirmed by XRD.⁸ However, according to the TGA analysis, a small amount of oxygen remained after the nitridation process; the formula of the as-prepared sample was approximately Ta₃N_{4.8}O_{0.3}. Furthermore, XPS analysis indicated that the surface contained significantly less nitrogen. For simplicity, this sample will be referred henceforth as Ta₃N₅. The photocatalytic reaction was carried out in a closed gas circulation system and irradiated by visible light using an Xe lamp (300 W) through a cut-off ($\lambda > 420$ nm) and water filters to remove light in the ultraviolet and infrared regions, respectively. The catalyst (0.2 g) was suspended in an aqueous solution (200 ml) equipped with magnetic stirring. For H₂ or O₂ evolution, an aqueous methanol solution (10% v/v) or an aqueous silver nitrate solution (0.01 M) was employed as the sacrificial electron donor or acceptor, respectively. For H₂ evolution, Pt was loaded by the impregnation method from an aqueous Pt[(NH₃)₄]Cl₂ solution followed by H₂ reduction for 2 h at 573 K.

The UV-Vis diffuse reflectance spectra of Ta₂O₅, subjected to nitridation for various periods, are shown in Figure 1. The absorption bands in the visible region of the products increased

with longer durations of the nitridation period. As shown in Figure 1(d), heating over 10 h resulted in a Ta₃N₅ single phase, and the band gap of Ta₃N₅ was estimated to be 2.1 eV from its UV-Vis diffuse reflectance spectrum. It can be implied from the analogous to oxide-photocatalysts that the conduction and valence bands of Ta₃N₅ are attributable to the Ta5d and N2p orbitals, respectively. The narrowing of the band gap by nitridation can be explained by the higher negative potential of the valence band of Ta₃N₅ as compared to that of Ta₂O₅⁹.

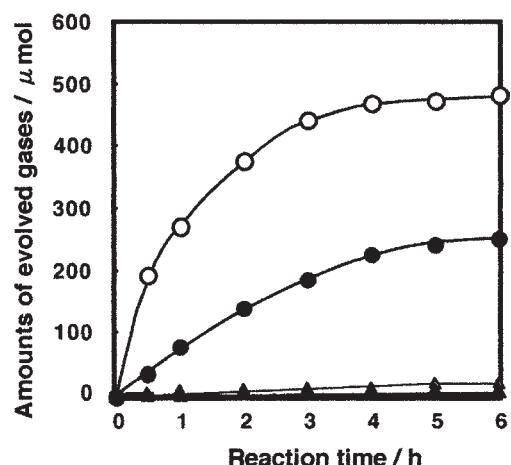

Figure 1. UV-Vis diffuse reflectance spectra of Ta₂O₅ subjected to various durations of nitridation: (a) 0 h, (b) 1 h, (c) 5 h, (d) 10 h.

Figure 2 shows the H₂ evolution from an aqueous methanol solution over Pt-loaded Ta₃N₅ catalyst (3.0% w/w) under visible light irradiation as a function of time. The reaction was conducted for 96 h, with intermediate evacuations of the products accumulated in the gas phase at 24 h intervals. Although a small amount of N₂ evolved in the beginning of the first run, additional N₂ evolution was not detected during the course of the continuous photo-irradiation. This initial N₂ evolution may be attributed to the oxidation of the adsorbed nitrogen-containing species and/or decomposition of the surface Ta–N species. The maintained activity of H₂ evolution over the long period of photo-irradiation without N₂ evolution indicated that degradation of the catalyst is negligible. A roughly estimated average quantum efficiency for the H₂ evolution between 420 nm < λ < 600 nm was 0.1% (based on the total photon number irradiating the reaction vessel being 2.8×10^{18} s⁻¹).

Additionally, the photocatalytic activity of O₂ evolution on Ta₃N₅ was examined. Figure 3 shows the O₂ evolution over Ta₃N₅ catalyst from an aqueous AgNO₃ solution under visible light irradiation as a function of time. When the reaction was carried out in the presence of La₂O₃ powder (0.2 g), which kept the pH value of the aqueous solution at approximately 8.5, O₂

Figure 2. H_2 (○) and N_2 (▲) evolution from an aqueous methanol solution over Pt-loaded Ta_3N_5 . Catalyst (0.2 g); an aqueous methanol solution (10% v/v); Pt (3.0% w/w); light source, 300 W Xe lamp ($\lambda > 420$ nm).

Figure 3. O_2 and N_2 evolution from an aqueous AgNO_3 solution over Ta_3N_5 catalyst. O_2 (○) and N_2 (△) evolution using a mixture of Ta_2O_5 and La_2O_3 subjected to nitridation at 1133 K before reaction. O_2 (●) and N_2 (▲) evolution using Ta_3N_5 and La_2O_3 (simply mixed in the solution). Catalyst (0.2 g) + La_2O_3 (0.2 g); aqueous AgNO_3 solution (0.01 M); light source, 300 W Xe lamp ($\lambda > 420$ nm).

evolved from the aqueous AgNO_3 solution with a negligible amount of evolved N_2 . However, when the reaction was carried out under acidic conditions ($\text{pH} < \text{ca. 7}$), the rate of O_2 evolution was remarkably suppressed, accompanied by a comparable amount of N_2 evolution. The N_2 evolution is attributed to the anodic-dissolution of catalyst. The oxidation of N^{3-} by valence band holes competes with the oxidation of H_2O , and the prevailing reaction is controllable by setting the pH of the reaction solution appropriately. A higher activity of O_2 evolution was obtained when the Ta_3N_5 catalyst was prepared by nitridation using a mixture of Ta_2O_5 and La_2O_3 powder. In this case, the product consisted of Ta_3N_5 and unreacted La_2O_3 without the formation of any other nitride or oxynitride. Figure 3 also shows the O_2 evolution as a function of time using this catalyst. The initial rate of O_2 evolution (ca. $420 \mu\text{mol}/\text{h}$) was roughly fivefold higher than that of Ta_3N_5 catalyst prepared from Ta_2O_5 alone, and the Ag^+ ions in the solution (2000 μmol) were almost entirely consumed during the photo-irradiation (6 h) to form 500 μmol of

O_2 . This result also excludes the possible formation of NO_2^- or NO_3^- ions as oxidation products within our experimental error. The quantum efficiency of this reaction was estimated to be approximately 10% ($420 \text{ nm} < \lambda < 600 \text{ nm}$), which is one of the highest values reported so far. The rate of H_2 evolution was not enhanced as compared to that of normally prepared Ta_3N_5 catalyst.

Based on these results, Ta_3N_5 has a band structure available for both the reduction of H^+ and oxidation of water. Although some photocatalysts such as WO_3 and BiVO_4 have shown O_2 evolution from AgNO_3 solution under visible light irradiation, such materials have not exhibited reduction of H^+ into H_2 because their conduction bands do not have sufficient potentials for H_2 evolution.¹⁰ Our preliminary photoelectrochemical measurements using a Ta_3N_5 film formed on Ta metal foil indicated that the flat band potential of Ta_3N_5 is about -0.1 eV (vs NHE, at $\text{pH} = 6$). Moreover, Ta_3N_5 was found to be of an *n*-type semiconductor, and presumably the bottom of its conduction band is located at a more negative potential of about 0.2 eV than the flat band potential. The top level of the valence band is estimated to be about 1.8 eV (vs NHE).

The high efficiency of O_2 evolution from aqueous AgNO_3 solution indicates the facile migration of electrons and holes in the bulk of Ta_3N_5 to the surface. The difficulty to enhance the activity of H_2 evolution may be due to the presence of surface states trapping photo-generated electrons, which are favorable in reducing Ag^+ ions but unfavorable for H_2 evolution. This suggestion is supported by the TGA and XPS analyses indicating surface imperfection as mentioned above. Therefore, the rate-determining step of H_2 evolution is considered to be the electron transfer to Pt or to H^+ on the surface of the catalyst. The rate of H_2 evolution from aqueous methanol solution could be enhanced if the electron transfer from Ta_3N_5 to the loaded Pt particles or H^+ ions is facilitated.

In summary, a transition metal nitride, Ta_3N_5 , was presented as a novel photocatalyst that has a potential to evolve H_2 and O_2 under visible light irradiation. The photocatalytic activity of Ta_3N_5 was relatively high for O_2 evolution from aqueous AgNO_3 solution, reaching quantum efficiency of 10%, but was relatively low for H_2 evolution (ca. 0.1%). Another important result is that photo-anodic or cathodic corrosion was prevented in alkaline solutions, which is distinctively different than previously examined photocatalysts with narrow band gaps such as some chalcogenides. Because Ta_3N_5 is a promising candidate for overall water-splitting utilizing visible light, we are presently attempting to improve the activity for H_2 evolution.

References and Notes

- 1 K. Domen, J. N. Kondo, M. Hara, and T. Takata, *Bull. Chem. Soc. Jpn.*, **73**, 1307 (2000).
- 2 A. Kudo and H. Kato, *Chem. Phys. Lett.*, **331**, 373 (2000).
- 3 H. Kato and A. Kudo, *Chem. Phys. Lett.*, **295**, 4887 (1998).
- 4 K. Sayama and H. Arakawa, *J. Photochem. Photobiol., A*, **77**, 243 (1994).
- 5 Z. Zou, J. Ye, K. Sayama, and H. Arakawa, *Nature*, **414**, 625 (2001).
- 6 A. B. Ellis, S. W. Kaiser, J. M. Bolts, and M. S. Wrighton, *J. Am. Chem. Soc.*, **99**, 2839 (1977).
- 7 A. J. Bard and M. S. Wrighton, *J. Am. Chem. Soc.*, **124**, 1706 (1977).
- 8 N. E. Brese, *Acta Crystallogr., Sect. C*, **47**, 2291 (1991).
- 9 C. M. Fang, E. Orhan, G. A. de Wijs, H. T. Hintzen, R. A. de Groot, R. Marchand, J.-Y. Saillard, and G. de With, *J. Mater. Chem.*, **11**, 1248 (2001).
- 10 A. Kudo, K. Omori, and H. Kato, *J. Am. Chem. Soc.*, **121**, 11459 (1999).